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Evaluation of the memory kernel for fluctuation decay in simulated glass-forming
Nig sZr o 5 liquids
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Molecular dynamics simulations for undercooled glass-formingsEl, 5 liquids are analyzed to evaluate
the memory kernel that governs the decay of structural fluctuations according to the schematic model of the
mode coupling theory. The resulting kernel exhibits significant structures which explains the absence of the
inverse power law decay in the eagyregime.[S1063-651X96)51005-6

PACS numbd(s): 61.20.Ja, 64.70.Pf

The present contribution is concerned with the decay ofmentally determinedcorrelation functions to compare with
structural fluctuations in glass-forming, undercooled liquids the MCT assumptions, a question so far not considered in the
especially with the estimation of the underlying memory ker-literature, to our knowledge. Such an evaluation is the central

nel from molecular dynamicéMD) simulations of the re- Point of the present study, where we analyze the MD gener-
lated correlation function. This problem is of particular im- ated self-intermediate scattering function of the mentioned

. T " Nig.gZrg 5 model.
portance with regard to the liquid-glass transitidf]. 0.5-°0.5 . . .
According to the seminal papers of BengtzeliustZep and In our analysis we introduce the memory kerfgt) via

i the equation of motion for the correlation functiah(t
Sjogren[2], and independently of Leutheuss8l, the mode whichqaccording to the MCT can be expressed as a(dzslmped

coupling Fhepry(MCT)'for dense 'quuids(e.g.[.4,5]) implies  harmonic oscillator function
that the liquid(“ergodic”) state is characterized through a
decay of structural correlations while below a critical tem- 2 2 J t , ,

- . . P () wg+P(t)+ | dt/F(t—t")9,P(t')=0 1
peratureT,. a solidlike “nonergodic” state with structural PO/ wpt () 0 ( Vo) @
arrest exists where fluctuations are effectively frozen. Here .~ . _ _
correlations decay on a longer time scale by thermally actiWith initial conditions &(0)=1 and ¢,(0)=0. From the

e . ‘ . MCT it is known, and was recently reconfirmed by Ka-
yated diffusion processg6—8]. All these details are hidden wasaki[5], that F(t) for a density fluctuation with wave
in the memory kernel.

B o vector q involves products of correlation functions of fluc-
The “schematic” model of the MCT proposed 12,3]  y,ations with differentg, the diffusion coefficient, and the
predicts theT, transition and makes detailed predictionsinstantaneous viscosity coefficient. The schematic theory

(compare, e.g.[9]) about the fluctuation dynamics in the proposed in[2,3] models the products of correlation func-
system, like the finakv decay and the preceding regime. tions by polynomials in the correlator under consideration.
The predictions were verified qualitatively and quantitativelyThe “idealized schematic theory” neglects atomic diffusion

in many cases by experiments and MD computer simulationgnd relies on the assumption
(see, e.g., the compilation {10]). Also the predictions of _ o
the full MCT for the a decay recently were successfully F(=Fo(1):=h() +1(®(1)), @
compared with the fluctuation dynamics of colloidal suspeniwhere f(®) means the polynomial i and h(t) a short
sions from light scattering experiments by van Megen andime viscous damping which conveniently is approximated
Underwood[11]. Despite this great success in interpretingby an instantaneous termyd(t). The asymptotic behavior
undercooled liquids’ dynamics there are in some cases disf ®(t) is determined byf(®). A decisive role here is
crepancies found between the MCT predictions for the earlplayed by the quantity introduced [i3]
B regime and data from, e.g., MD simulations, like _ 1
[10,12,13, and experiments, like the recent Raman scatter- 9(®)=f(P) (> "~1) )
ing measurementl4], where in[14] the discrepancies are with ®<[0,1]. g(®) is related in a simple way taF(®)
ascribed to atomic vibrations neglected in the MCT. =f(d)—P/(1—- D) frequently used in the schematic MCT
The predictions of the schematic MCT model crucially (e.g., [15]). If g(®)<1 for all ®<[0,1] then the solu-
depend on the assumption that the memory kernel whiclions ®(t) of Eq. (1) decay to zero and correlations between
describes the decay of the fluctuations and the dynamics afructural fluctuations vanish at large The correlator
the corresponding correlation functiof(t), can be ex- describes an ergodic liquid. In the following we use
pressed in the relevant regime as a monotonic and differerg,,: = Max{g(®)}, and ®,,<[0,1] the position of the maxi-
tiable function ofd(t). Our recent analysigl3] of the self- mum. Forg,,>1 a structural arrest witl®(t—o)=d,>0
intermediate scattering function in a MD simulate@ Mir,5;  may take place where structural fluctuations are effectively
model already revealed that reproduction of the MD data afrozen. This characterizes the nonergodic low-temperature
solutions of the schematic MCT equation demands a morsituation.g,,=1 is the critical condition for a change in the
general approach. This raises the question for explicit evaluuctuation dynamics and is related to the critical temperature
ation of the memory kernel from MD simulatédr experi-  T..
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The “extended schematic theory” simulates atomic dif-
fusion by taking into account the coupling to transverse cur-

rents. This yields
F(t)= 7 H1[D(2) + LAFo(t)}, ]} (4)

Here 4 means the Laplace transfornt/ ! its inverse.

D(z) models the coupling to the transverse currents. It leads

to the final decay of structural fluctuations also bel®w.

This sets one of the basic problems in the classification of the

solutions of Eq.(1) as it may not be obvious for a given

solution whether it belongs to the regime above or below

T, if atomic diffusion is included.
To carry out our analysis we introduce

Fe(w) +iF (@)= lim ZF®}, i,

n—0

©)

[and D (w), Ps(w) analogouslywhich gives from Eq(1)

wF(w)=od(0)/R(w), (6)
R(0)=[1-0®(»)*+[0P(»)]? ()
while the time dependent kernel follows from
F(t)=(2/7-r)fwdw F.(w)coq wt). (8)
0

Below we apply Egs(5)—(8) to evaluate from MD simula-
tions for a Nj sZrq 5 model the memory kernel for the self-
part of the intermediate scattering function

P (q,1): =((exp{ig-x;(t+1to) =X;(to) ]})). )

The brackets mean averages over the atpargd the initial
configurationd .
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FIG. 1. Self-intermediate scattering functi@h(T) from MD
simulations for Nj Zrg 5 (wiggly lines: short time data; symbols:
long time data; dotted lines: smoothed curves with extrapolation
and susceptibilityw®  (w) of the smoothed curves.

time data present averages over the full evolution paths. For
generating the 1040 and 980 K structures the isothermally
equilibrated 1100 K configuration was cooled further down
with a rate of 2.7%10° K/s (i.e., 17.2<1(° additional in-
tegration steps to obtain the 980 K struciui@lowed by 5

ns, respectively, 10 ns MD production runs. Due to this pro-
cessing the low-temperature data describe much better re-
laxed structures than studied [ih3].

Figure 1 provides our results for the self-part of the inter-
mediate scattering function, E¢), in a time window be-
tween 10 *and 108 s. It displays by wiggly lines the short
time results while the symbols give the long time behavior.
Where necessary the curves are extrapolated by assuming an

The MD simulations are carried out as state-of-the-artasymptotic stretched exponential behaviggex —(t/7)?]

isothermal-isobaric N,t,p) calculations. The Newtonian

with common valueB3=0.654) for all temperatures(This

equations ofN=648 atoms are numerically integrated by achoice of 8 shall be justified latey.From these “raw” data

fifth order predictor-corrector algorithriiime stepAt=2.5

X 10 '® s) in a cubic volume with periodic boundary con-

ditions and variable box length. The interatomic couplings

are modeled as ifl3,16 by a volume dependent electron-

gas termE,. (V) and pair potentialsp(r) adapted to the

smoothed curves are generated and provided in Fig. 1 by
dotted lines. In Fig. 1 also are shown the related susceptibili-
ties w® (w).

The spectral distributionsF (w) deduced via Eq(6)
from w®.(w) andw® (w) (the latter is not shown in Fig. 1

equilibrium distance, depth, width, and zero of the electronfor clearness of the presentatjoare displayed in Fig. 2 as

theoretical Hausleitner-Hafner potenti@ls?] for Nig sZrg 5.
In the present study we concentrate ap values of

well as the corresponding(t). Evaluation ofwF.(w) for
high frequencies at the upper limit of the vibrational peak

21.8 nm ! lengths parallel to the edges of the simulationdeserves some care since minor, spurious intensities in
cube, which correspond to wavelengths of approximately thex®.(w) may give rise to enormously enhanced structures in

averaged nearest neighbor distance.
In [13] a value of T,~1120 K was estimated for this
model. Here we consider configurations around this

wF.(w) due too® (w)—1 in this frequency regime. In the
smoothing process we have tried to eliminate unrealistic
high-frequency fluctuations. Nevertheless, there remains

Those for 1100 K and above are generated by “cooling” thesome uncertainty inoF.(w) at high o, respectively in

system in the computer from 3000 K with ratedT=2.5

F(t) at smallt, which may explain the deviations from a

X 10* K/s to the desired temperature and afterwards equilistrictly monotonic temperature dependence in the mentioned

brating it isothermally during additional $@ntegration steps

(nominally 2.5 n& The further evolution of these relaxed

regimes.
Obviously the obtaineéf (t) can be cast into the form of

configurations then is studied. To model with sufficient sta-Eq. (2), which means the dynamics of the system can be
tistical significance the short time behavior below 90 ps wemapped onto those of an idealized schematic one. In Fig.
use 16 randomly selected configurations along the latter evé(a) we tentatively plot=(t) vs ®(t), i.e.,F(®). According
lution path as initial configurations for simulation runs. Theto this plot there exist limiting value®,(T) so thatF(®)
short time®(q,t) are averages over these runs. The longior ®<dy(T) is close to a universal behavior while for
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FIG. 2. Memory kernelF(t) (upper par related to the self-
intermediate scattering function and spectral distributigf, ()
for the kernel(lower par}. (Temperatures as in Fig).1

O>dy(T) deviations are seendy(T) significantly de-
creases with increasing It is tempting to modeF (®) be-
low ®y(T) by a (weakly T-dependent polynomial P(®),
consider this polynomial as a representationf(P), and
extend it to ®>®y(T). According to Eqg.(2) a suitable
h(t) then can be introduced as the difference betwiegn
and P(®(t)). For the present model tHgt) are limited to
times below 3 ps due to construction. Figur@)3also in-
cludes by the dotted line the polynomi{®) for 980 K.
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TABLE |. Coefficients of the polynomial expansiof(®)
=3 A0

980 K 1040 K 1100 K 1200 K 1300 K
n Ap
1 0.4834 0.4660 0.4215 0.4510 0.4660
2 0.8649 0.8986 1.2019 1.1942 1.2346
3 0.2442 0.2390 0.1472 0.2735 0.3920
4 2.9165 3.0881 2.5615 3.3390 3.4695
5 0.1073 0.1359 0.1486 0.1919 0.1373
6 1.2762 1.5720 2.2363 1.8626 1.3054
7 2.4758 2.9143 5.0374 2.8314 2.0658
8 0.0031 0.0032 0.0072 0.0019 0.0018
9 0.9067 0.7618 0.2298 0.0288 0.0368
10 6.8123 4.7400 0.3077 0.0196 0.0323

For our final discussion we present in FigbBthe quan-
tities

G(P):=F(d)(d 1-1), (10)

9(®)=P(d)(®~*-1), (11
i.e., the analog to E(q:3), wheref(®) in g(P) now is sub-
stituted byP(®). The G(®)’s have a more pronounced
dependence than tHe(®). [Therefore we have determined
P(F) as the polynomial with non-negative coefficients

The P(®) for other temperatures are §imi|ar b_ut are sup-which fits besty(®) to G(®) for ®<dy(T).] The 1500 K
pressed for clearness of the presentation. Their coefficientgrve strikingly differs from the others at lo. It indicates

are provided by Table I.

1.0

G(®), g(P)

0.6

FIG. 3. (a) Memory kernelF as a function of® (dotted line:
extrapolated lowd polynomial at 980 K. (b) G(®) (full lines) and
g(P) (dotted line$ according to Egs(10) and (11). [Dash-dotted
line: G(®) at 1500 K]

deviations from the stretched exponential behavior which
may be attributed to isolated decay events.

Theg(®) are displayed in Fig.®) by dotted lines. They
remain below the critical value one—or touch it in a region
whereh(t) is active—while the overshooting @&(d) over
this limit is included inh(t). The g(®) show maxima with
gm<1 for T=1200 K andg,,~1 for T=1100,1040,980 K.
This reconfirms our earlier conclusigri3] that the sys-
tem is in the liquid, ergodic state at 1200 K and above. The
behavior at 1100 K and below may be interpreted as
“nearly arrested” with correlation decay due to ther-
mally excited atomic diffusion, in agreement wifi3]
and T.~1200 K estimated there. Here we now may com-
ment on the value of the stretched exponential parameter
B used to extrapolate the MD data into the lateegime. The
idealized schematic theorye.g., [15]) predicts that the
dynamics around ; are governed by the exponential param-
eter A=(1—®)3[3*f(D)/9P?]/2 (at D=D, for T~T,).
From our 1100 K curve in the range of the MD data with
f(®)=P(P) a value A\=0.653) follows. Therefrom, by
B=—1In(2)/In(1—\) [7], we get 3=0.654) as used in the
extrapolation.

The presentation in Fig. 3 offers a straightforward inter-
pretation of the decay scenery. The system behaves like an
idealized schematic one governed by two different decay
processes. As is typical for theschematit MCT the long
time process has a time scale set by the fluctuations under
consideration, i.e.f(t)=P(®(t)). The short time process,
characterized b#(t), has a time scale set by an independent
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mechanismh(t) is active in the time range where the atomic power-law decay,® —t~ ("1 [9] where the parameteris
motion is governed by the vibrations in local cages. Hence itelated to the exponential parameterOur analysis shows
seems justified to ascrii®(t) to these vibrations and to in- that aroundT in this ® range the structural decay is mark-
terpret its effect as randomization of the structure due tadly determined byh(t) which masks this power law. It is

(nonlinearities in this motion. Below and around the

the particular fact thatb,(T) and ®4(T) nearly coincide

combined action of both processes carries the system to which yields that the inverse power law is not visible in the

temporary structural arrest @t,,- ®,(T) indicates the cross-

correlation function. Consequently there is fipeak detect-

over from the combined action of both processes to the acable apart from the vibrations while the later part of the

tion of the pure long-time proces,, and ®,(T) nearly
coincide sinced®, is more or less reached befdnét) gets

regime is well developed as henét) already died out. Our
point of view agrees with the interpretation by &¢teret al.

ineffective and the system remains at this value a sufficienft14], who from experimental observations attribute the sup-

long time forh(t) to die out.

pression of the inverse power law to the atomic vibrations.

Now we are in the position to address the initial questionwWhile our treatment greatly reconfirms for lowérthe MCT

concerning the behavior ab(t) in the earlyB regime, i.e.,
the regime withd (t) slightly aboved,,,. For this regime the

assumption of a smooth and weaKlydependentf (®) it
reveals significant deviations at largérwhich emphasizes

schematic theory with instantaneous viscous damping dethe need for incorporation of atomic vibrations in the micro-

duces from the polynomial approach fé¢d) an inverse

scopic MCT.
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