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Molecular dynamics simulations for undercooled glass-forming Ni0.5Zr0.5 liquids are analyzed to evaluate
the memory kernel that governs the decay of structural fluctuations according to the schematic model of the
mode coupling theory. The resulting kernel exhibits significant structures which explains the absence of the
inverse power law decay in the earlyb regime.@S1063-651X~96!51005-6#

PACS number~s!: 61.20.Ja, 64.70.Pf

The present contribution is concerned with the decay of
structural fluctuations in glass-forming, undercooled liquids,
especially with the estimation of the underlying memory ker-
nel from molecular dynamics~MD! simulations of the re-
lated correlation function. This problem is of particular im-
portance with regard to the liquid-glass transition@1#.
According to the seminal papers of Bengtzelius, Go¨tze, and
Sjögren@2#, and independently of Leutheusser@3#, the mode
coupling theory~MCT! for dense liquids~e.g.@4,5#! implies
that the liquid~‘‘ergodic’’ ! state is characterized through a
decay of structural correlations while below a critical tem-
peratureTc a solidlike ‘‘nonergodic’’ state with structural
arrest exists where fluctuations are effectively frozen. Here
correlations decay on a longer time scale by thermally acti-
vated diffusion processes@6–8#. All these details are hidden
in the memory kernel.

The ‘‘schematic’’ model of the MCT proposed in@2,3#
predicts theTc transition and makes detailed predictions
~compare, e.g.,@9#! about the fluctuation dynamics in the
system, like the finala decay and the precedingb regime.
The predictions were verified qualitatively and quantitatively
in many cases by experiments and MD computer simulations
~see, e.g., the compilation in@10#!. Also the predictions of
the full MCT for the a decay recently were successfully
compared with the fluctuation dynamics of colloidal suspen-
sions from light scattering experiments by van Megen and
Underwood@11#. Despite this great success in interpreting
undercooled liquids’ dynamics there are in some cases dis-
crepancies found between the MCT predictions for the early
b regime and data from, e.g., MD simulations, like
@10,12,13#, and experiments, like the recent Raman scatter-
ing measurements@14#, where in@14# the discrepancies are
ascribed to atomic vibrations neglected in the MCT.

The predictions of the schematic MCT model crucially
depend on the assumption that the memory kernel which
describes the decay of the fluctuations and the dynamics of
the corresponding correlation functionF(t), can be ex-
pressed in the relevant regime as a monotonic and differen-
tiable function ofF(t). Our recent analysis@13# of the self-
intermediate scattering function in a MD simulated Ni0.5Zr0.5
model already revealed that reproduction of the MD data as
solutions of the schematic MCT equation demands a more
general approach. This raises the question for explicit evalu-
ation of the memory kernel from MD simulated~or experi-

mentally determined! correlation functions to compare with
the MCT assumptions, a question so far not considered in the
literature, to our knowledge. Such an evaluation is the central
point of the present study, where we analyze the MD gener-
ated self-intermediate scattering function of the mentioned
Ni0.5Zr0.5 model.

In our analysis we introduce the memory kernelF(t) via
the equation of motion for the correlation functionF(t)
which according to the MCT can be expressed as a damped
harmonic oscillator function

] t
2F~ t !/v0

21F~ t !1E
0

t

dt8F~ t2t8!] tF~ t8!50 ~1!

with initial conditionsF~0!51 and ] tF(0)50. From the
MCT it is known, and was recently reconfirmed by Ka-
wasaki @5#, that F(t) for a density fluctuation with wave
vector q involves products of correlation functions of fluc-
tuations with differentq, the diffusion coefficient, and the
instantaneous viscosity coefficient. The schematic theory
proposed in@2,3# models the products of correlation func-
tions by polynomials in the correlator under consideration.
The ‘‘idealized schematic theory’’ neglects atomic diffusion
and relies on the assumption

F~ t !5F0~ t !:5h~ t !1 f „F~ t !…, ~2!

where f (F) means the polynomial inF and h(t) a short
time viscous damping which conveniently is approximated
by an instantaneous termh0d(t). The asymptotic behavior
of F(t) is determined byf (F). A decisive role here is
played by the quantity introduced in@13#

g~F!5 f ~F!~F2121! ~3!

with FP@0,1#. g(F) is related in a simple way toDF(F)
5 f (F)2F/(12F) frequently used in the schematic MCT
~e.g., @15#!. If g(F),1 for all FP@0,1# then the solu-
tionsF(t) of Eq. ~1! decay to zero and correlations between
structural fluctuations vanish at larget. The correlator
describes an ergodic liquid. In the following we use
gm:5Max{ g(F)}, andFmP@0,1# the position of the maxi-
mum. Forgm.1 a structural arrest withF(t→`)5F0.0
may take place where structural fluctuations are effectively
frozen. This characterizes the nonergodic low-temperature
situation.gm51 is the critical condition for a change in the
fluctuation dynamics and is related to the critical temperature
Tc .
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The ‘‘extended schematic theory’’ simulates atomic dif-
fusion by taking into account the coupling to transverse cur-
rents. This yields

F~ t !5L21
ˆ1/@D~z!11/L$F0~ t !%z#‰t . ~4!

Here L means the Laplace transform,L21 its inverse.
D(z) models the coupling to the transverse currents. It leads
to the final decay of structural fluctuations also belowTc .
This sets one of the basic problems in the classification of the
solutions of Eq.~1! as it may not be obvious for a given
solution whether it belongs to the regime above or below
Tc if atomic diffusion is included.

To carry out our analysis we introduce

Fc~v!1 iF s~v!5 lim
h→0

L$F~ t !%h2 iv ~5!

@andFc(v), Fs(v) analogously# which gives from Eq.~1!

vFc~v!5vFc~v!/R~v!, ~6!

R~v!5@12vFs~v!#21@vFc~v!#2, ~7!

while the time dependent kernel follows from

F~ t !5~2/p!E
0

`

dv Fc~v!cos~vt !. ~8!

Below we apply Eqs.~5!–~8! to evaluate from MD simula-
tions for a Ni0.5Zr0.5 model the memory kernel for the self-
part of the intermediate scattering function

F~q,t !:5^^exp$ iq•xj~ t1t0!2xj~ t0!#%&&. ~9!

The brackets mean averages over the atomsj and the initial
configurationst0 .

The MD simulations are carried out as state-of-the-art
isothermal-isobaric (N,t,p) calculations. The Newtonian
equations ofN5648 atoms are numerically integrated by a
fifth order predictor-corrector algorithm~time stepDt52.5
310215 s) in a cubic volume with periodic boundary con-
ditions and variable box lengthL. The interatomic couplings
are modeled as in@13,16# by a volume dependent electron-
gas termEvol(V) and pair potentialsf(r ) adapted to the
equilibrium distance, depth, width, and zero of the electron-
theoretical Hausleitner-Hafner potentials@17# for Ni0.5Zr0.5.
In the present study we concentrate onq values of
21.8 nm21 lengths parallel to the edges of the simulation
cube, which correspond to wavelengths of approximately the
averaged nearest neighbor distance.

In @13# a value ofTc'1120 K was estimated for this
model. Here we consider configurations around thisTc .
Those for 1100 K and above are generated by ‘‘cooling’’ the
system in the computer from 3000 K with rate2]T52.5
31012 K/s to the desired temperature and afterwards equili-
brating it isothermally during additional 106 integration steps
~nominally 2.5 ns!. The further evolution of these relaxed
configurations then is studied. To model with sufficient sta-
tistical significance the short time behavior below 90 ps we
use 16 randomly selected configurations along the latter evo-
lution path as initial configurations for simulation runs. The
short timeF(q,t) are averages over these runs. The long

time data present averages over the full evolution paths. For
generating the 1040 and 980 K structures the isothermally
equilibrated 1100 K configuration was cooled further down
with a rate of 2.753109 K/s ~i.e., 17.23106 additional in-
tegration steps to obtain the 980 K structure! followed by 5
ns, respectively, 10 ns MD production runs. Due to this pro-
cessing the low-temperature data describe much better re-
laxed structures than studied in@13#.

Figure 1 provides our results for the self-part of the inter-
mediate scattering function, Eq.~9!, in a time window be-
tween 10214 and 1028 s. It displays by wiggly lines the short
time results while the symbols give the long time behavior.
Where necessary the curves are extrapolated by assuming an
asymptotic stretched exponential behaviorf0exp@2(t/t)b#
with common valueb50.65~4! for all temperatures.~This
choice ofb shall be justified later.! From these ‘‘raw’’ data
smoothed curves are generated and provided in Fig. 1 by
dotted lines. In Fig. 1 also are shown the related susceptibili-
tiesvFc(v).

The spectral distributionsvFc(v) deduced via Eq.~6!
from vFc(v) andvFs(v) ~the latter is not shown in Fig. 1
for clearness of the presentation! are displayed in Fig. 2 as
well as the correspondingF(t). Evaluation ofvFc(v) for
high frequencies at the upper limit of the vibrational peak
deserves some care since minor, spurious intensities in
vFc(v) may give rise to enormously enhanced structures in
vFc(v) due tovFs(v)→1 in this frequency regime. In the
smoothing process we have tried to eliminate unrealistic
high-frequency fluctuations. Nevertheless, there remains
some uncertainty invFc(v) at high v, respectively in
F(t) at small t, which may explain the deviations from a
strictly monotonic temperature dependence in the mentioned
regimes.

Obviously the obtainedF(t) can be cast into the form of
Eq. ~2!, which means the dynamics of the system can be
mapped onto those of an idealized schematic one. In Fig.
3~a! we tentatively plotF(t) vsF(t), i.e.,F(F). According
to this plot there exist limiting valuesF0(T) so thatF(F)
for F,F0(T) is close to a universal behavior while for

FIG. 1. Self-intermediate scattering functionF(T) from MD
simulations for Ni0.5Zr0.5 ~wiggly lines: short time data; symbols:
long time data; dotted lines: smoothed curves with extrapolation!
and susceptibilityvFc(v) of the smoothed curves.
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F.F0(T) deviations are seen.F0(T) significantly de-
creases with increasingT. It is tempting to modelF(F) be-
low F0(T) by a ~weakly T-dependent! polynomial P(F),
consider this polynomial as a representation off (F), and
extend it toF.F0(T). According to Eq.~2! a suitable
h(t) then can be introduced as the difference betweenF(t)
andP„F(t)…. For the present model theh(t) are limited to
times below 3 ps due to construction. Figure 3~a! also in-
cludes by the dotted line the polynomialP(F) for 980 K.
The P(F) for other temperatures are similar but are sup-
pressed for clearness of the presentation. Their coefficients
are provided by Table I.

For our final discussion we present in Fig. 3~b! the quan-
tities

G~F!:5F~F!~F2121!, ~10!

g~F!5P~F!~F2121!, ~11!

i.e., the analog to Eq.~3!, wheref (F) in g(F) now is sub-
stituted byP(F). TheG(F)’s have a more pronouncedT
dependence than theF(F). @Therefore we have determined
P(F) as the polynomial with non-negative coefficients
which fits bestg(F) to G(F) for F,F0(T).# The 1500 K
curve strikingly differs from the others at lowF. It indicates
deviations from the stretched exponential behavior which
may be attributed to isolated decay events.

Theg(F) are displayed in Fig. 3~b! by dotted lines. They
remain below the critical value one—or touch it in a region
whereh(t) is active—while the overshooting ofG(F) over
this limit is included inh(t). Theg(F) show maxima with
gm,1 for T>1200 K andgm'1 for T51100,1040,980 K.
This reconfirms our earlier conclusion@13# that the sys-
tem is in the liquid, ergodic state at 1200 K and above. The
behavior at 1100 K and below may be interpreted as
‘‘nearly arrested’’ with correlation decay due to ther-
mally excited atomic diffusion, in agreement with@13#
and Tc'1200 K estimated there. Here we now may com-
ment on the value of the stretched exponential parameter
b used to extrapolate the MD data into the latea regime. The
idealized schematic theory~e.g., @15#! predicts that the
dynamics aroundTc are governed by the exponential param-
eter l5(12F)3@]2f (F)/]F2#/2 ~at F5Fm for T'Tc!.
From our 1100 K curve in the range of the MD data with
f (F)5P(F) a value l50.65~3! follows. Therefrom, by
b52 ln(2)/ln(12l) @7#, we getb50.65~4! as used in the
extrapolation.

The presentation in Fig. 3 offers a straightforward inter-
pretation of the decay scenery. The system behaves like an
idealized schematic one governed by two different decay
processes. As is typical for the~schematic! MCT the long
time process has a time scale set by the fluctuations under
consideration, i.e.,f (t)5P„F(t)…. The short time process,
characterized byh(t), has a time scale set by an independent

TABLE I. Coefficients of the polynomial expansionf (F)
5(nlnF

n.

n

980 K 1040 K 1100 K 1200 K 1300 K

ln

1 0.4834 0.4660 0.4215 0.4510 0.4660
2 0.8649 0.8986 1.2019 1.1942 1.2346
3 0.2442 0.2390 0.1472 0.2735 0.3920
4 2.9165 3.0881 2.5615 3.3390 3.4695
5 0.1073 0.1359 0.1486 0.1919 0.1373
6 1.2762 1.5720 2.2363 1.8626 1.3054
7 2.4758 2.9143 5.0374 2.8314 2.0658
8 0.0031 0.0032 0.0072 0.0019 0.0018
9 0.9067 0.7618 0.2298 0.0288 0.0368
10 6.8123 4.7400 0.3077 0.0196 0.0323

FIG. 2. Memory kernelF(t) ~upper part! related to the self-
intermediate scattering function and spectral distributionvFc(v)
for the kernel~lower part!. ~Temperatures as in Fig. 1!.

FIG. 3. ~a! Memory kernelF as a function ofF ~dotted line:
extrapolated low-F polynomial at 980 K!. ~b! G(F) ~full lines! and
g(F) ~dotted lines! according to Eqs.~10! and ~11!. @Dash-dotted
line: G(F) at 1500 K.#
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mechanism.h(t) is active in the time range where the atomic
motion is governed by the vibrations in local cages. Hence it
seems justified to ascribeh(t) to these vibrations and to in-
terpret its effect as randomization of the structure due to
~nonlinearities in! this motion. Below and aroundTc the
combined action of both processes carries the system to a
temporary structural arrest atFm•F0(T) indicates the cross-
over from the combined action of both processes to the ac-
tion of the pure long-time process.Fm and F0(T) nearly
coincide sinceFm is more or less reached beforeh(t) gets
ineffective and the system remains at this value a sufficient
long time forh(t) to die out.

Now we are in the position to address the initial question
concerning the behavior ofF(t) in the earlyb regime, i.e.,
the regime withF(t) slightly aboveFm . For this regime the
schematic theory with instantaneous viscous damping de-
duces from the polynomial approach forf (F) an inverse

power-law decay] tF2t2(a11) @9# where the parametera is
related to the exponential parameterl. Our analysis shows
that aroundTc in this F range the structural decay is mark-
edly determined byh(t) which masks this power law. It is
the particular fact thatFm(T) and F0(T) nearly coincide
which yields that the inverse power law is not visible in the
correlation function. Consequently there is nob peak detect-
able apart from the vibrations while the later part of theb
regime is well developed as hereh(t) already died out. Our
point of view agrees with the interpretation by Ro¨ssleret al.
@14#, who from experimental observations attribute the sup-
pression of the inverse power law to the atomic vibrations.
While our treatment greatly reconfirms for lowerF the MCT
assumption of a smooth and weaklyT-dependentf (F) it
reveals significant deviations at largerF which emphasizes
the need for incorporation of atomic vibrations in the micro-
scopic MCT.
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